Exploiting Code-Redundancies in ECOC for Reducing its Training Complexity using Incremental and SVM Learners

نویسندگان

  • Sang-Hyeun Park
  • Lorenz Weizsäcker
  • Johannes Fürnkranz
چکیده

We study an approach for speeding up the training of error-correcting output codes (ECOC) classifiers. The key idea is to avoid unnecessary computations by exploiting the overlap of the different training sets in the ECOC ensemble. Instead of re-training each classifier from scratch, classifiers that have been trained for one task can be adapted to related tasks in the ensemble. The crucial issue is the identification of a schedule for training the classifiers, which maximizes the exploitation of the overlap. For solving this problem, we construct a classifier graph, in which the nodes correspond to the classifiers, and the edges represent the training complexity for moving from one classifier to the next in terms of the number of added training examples. The solution of the Steiner Tree problem is an arborescence in this graph, which describes the learning scheme with the minimal total training complexity. We experimentally evaluate the algorithm with Hoeffding trees, as an example for incremental learners, where the classifier adaptation is trivial, and with SVMs, where we employ an adaptation strategy based on adapted caching and weight re-use, which guarantees that the learned model is the same as per batch learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Code Redundancies in ECOC

We study an approach for speeding up the training of error-correcting output codes (ECOC) classifiers. The key idea is to avoid unnecessary computations by exploiting the overlap of the different training sets in the ECOC ensemble. Instead of re-training each classifier from scratch, classifiers that have been trained for one task can be adapted to related tasks in the ensemble. The crucial iss...

متن کامل

Performance Analysis and Coding Strategy of ECOC SVMs

The theoretical upper bound of generalization error for ECOC SVMs is derived based on Fat-Shattering dimensionality and covering number. The factors affecting the generalization performance of ECOC SVMs are analyzed. From the analysis, it is believed that in real classification tasks, the performance of ECOC depends on the performance of the classifiers corresponding to its coding columns, whic...

متن کامل

Task Difficulty and Its Components: Are They Alike or Different across Different Macro-genres?

Task difficulty across different macro-genres continues to remain among less attended areas in second language development studies. This study examined the correlation between task difficulty across the descriptive, narrative, argumentative, and expository macro-genres. The three components of task difficulty (i.e., code complexity, cognitive complexity, and communicative stress) were also comp...

متن کامل

Using SVM and Error-correcting Codes for M Meeting Cor

Accurate classification of dialog acts (DAs) is important for many spoken language applications. Different methods have been proposed such as hidden Markov models (HMM), maximum entropy (Maxent), graphical models, and support vector machines (SVMs). In this paper, we investigate using SVMs for multiclass DA classification in the ICSI meeting corpus. We evaluate (1) representing DA tagging direc...

متن کامل

SVM-based CDMA receiver with incremental active learning

Recently, the feasibility of using support vector machines (SVMs) for multiuser detection in code division multiple access (CDMA) systems has been investigated. Previous results show that SVMs perform well with short training sequences but suffer from two drawbacks that are highly undesirable in real-time applications: the run-time complexity and the block-based learning. To deal with these pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010